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Why? 

Why do we use those heating and current drive methods  
we use? 

 
  
 
 

Because only for those are we able to: 
 
1.  Generate the power: transformation 
2.   Transport it to the plasma 
3.   Transport it inside of the plasma 
4.  Have it absorbed inside of the plasma: transformation 
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Requirements, an example 

Transformation Transportation Transformation 

Inside Outside 
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Possible Heating methods 

Particles 
Electromagnetic 

            current 

EM waves 

Neutral particle injection 

Ohmic 

Adiabatic compression 

depend on the confinement method 

 •  Laser beam 
•  Charged particle beam 
•  Kinetic energy 
•  Magnetic energy 

 
•  Self-heating (alpha particles) 

•  Ohmic current 
•  Compression 
•  Neutral beam injection 
•  EM Wave (EC, LH, IC, …) 
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Other uses of the “heating” methods 

•  Depending on the method, also used for 

–  Control 
–  Fuelling 
–  Inducing Rotation 
–  Transport of fast particles 
–  Diagnostics 

•  “Heating” methods, but not just for heating 
 
and  current drive 

•  Bulk current 
•  Localised current 
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Neutral Beam Injection: principle 

Ion source 

Neutral 
beam 

Electricity -> other form 
(kinetic energy of particles) 

Transport to plasma  
(outside part) 

Neutraliser 

Magnetic 
filter 

 	
  	


Beam duct 

 	


 
(inside part) 

Accellerator 

 
Ionisation 

 
Thermalisation 
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Problem: transport in the plasma 

•  Neutrals get easily ionized 

Therefore large machines  
need high beam velocities  
thus high beam energies 
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•  Energetic positive ions  
are difficult to neutralise 
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Neutral Beam Injection: principle 

Ion source 

Neutral 
beam 

Electricity -> other form 
(kinetic energy of particles) 

Transport to plasma  
(outside part) 

Neutraliser 

Magnetic 
filter 

 	
  	


Beam duct 

 	


 
(inside part) 

Accellerator 

 
Ionisation 

 
Thermalisation 
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Wave heating 

Electricity -> other form 
(electromagnetic oscillations) 

Transport to plasma  
(outside part) 
transmission lines 
 

       antenna 

 
(inside part) 

waves  
Thermalisation 

Antenna 

Wave to particles 

Resonance  
zone 

R 
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Wave propagation and absorption sets the frequency range that can be used. 

Wave heating: very tight combination of physics and technology 

Physics Technology 
✔ 

✔ 
✔ ✔ 
✔ ✔ 
✔ 

✔ 

✔ 

→ Electromagnetic energy 

Transmission lines 
Antenna 

Coupling 
Waves 
 
Waves -> Particles 

Transfer to bulk 
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Wave Equation 

generalized Ohm‘s law 

€ 

j = j(E,B)

€ 

jω ,k =σ ω,k( ) ⋅ Eω ,k

 tensortyconductivi : σ

€ 

∇ × E = −
∂B
∂t

€ 

∇ × B = µ0ε0
∂E
∂t

+ µ0 j

Maxwell‘s Equations 

€ 

∇ ⋅ E = ρ ε0

€ 

∇ ⋅ B = 0

€ 

∇ ×
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Dispersion relation 

•  set of homogenous, linear equations for Ex, Ey, and Ez, 
 
•  has non trivial (different from 0) solutions  
     provided the determinant vanishes 
 
•  det = 0 is known as the dispersion relation 

•  Existence of waves  
that transport energy from edge to inside the plasma 
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Dispersion relation, cold plasma case 

€ 

A ⋅ N 4 + B ⋅ N 2 +C = 0

€ 

A = S ⋅ sin2Θ + P ⋅ cos2Θ
B = R ⋅L ⋅ sin2Θ + P ⋅ S ⋅(1+ cos2Θ)
C = P ⋅R ⋅L

€ 

tg2Θ = −
(N 2 − R) ⋅ (N 2 − L) ⋅ P
(S ⋅ N 2 − R ⋅ L) ⋅ (N 2 − P)

€ 

det N × N ×1( ) + K(ω,N)[ ] = 0

with 

2 solutions for N2 

form of solution depends on S, P, R, L, Θ 

€ 
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c ⋅ k
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Characteristic frequencies 

€ 
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Requirements 

Waves 
 

 
Absorption 

Transformation Transportation Transformation 

Inside plasma Outside plasma 
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Resonance 

•  2 solutions for (k/k0)2, function of Θ 
–  if > 0 -> propagating 
–  if < 0 -> non-propagating 

•   (k/k0)2 can change sign 

–  by going through 0  ->  cut-off 
•  reflection 
•  evanescent wave 

–  by going through  infinity -> resonance 
•  absorption 
•  reflection and transmission 

x 

k2
perp 

k2
inf 

Cut-off 

€ 

N → 0 ; vph →∞ ; λ →∞ ; k → 0

€ 

N→∞ ; vph → 0 ; λ → 0 ; k→∞
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Wave propagation and absorption 

ω=ωUH"

ω	


k 

ωL"

 Alfvèn-Wave 
0 

O-Mode 

X-Mode 

Lower Hybrid Wave 

Upper Hybrid Wave 

ω
=c

k 

ωpe"

ωR"

ω=ωLH"

X 

X 

ωci"

ECRH 
LH 
ICRH 

3 frequency regions 
for plasma heating: 

ωce"

€ 

k⊥B→Θ = π 2
N 2 = P→O -mode

N 2 =
RL
S
→ X −mode

€ 

tg2Θ = −
(N 2 − R) ⋅ (N 2 − L) ⋅ P
(S ⋅ N 2 − R ⋅ L) ⋅ (N 2 − P)
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•  ECRH 
–  electron cyclotron resonance heating 

•  LH 
–  lower hybrid frequency 
  

•  ICRF 
–  Ion cyclotron range of frequencies 

Transport from outside plasma to inside: wave propagation  
        (wave cut-off and resonance) 

Transfer of energy from wave to particles: particle resonance condition 
       (wave-particle interaction) 

Wave  propagation and absorption 

- 

E 
~ B0 

+ 

ion unmagnetized, oscillate with E1 

electrons oscillate with E1 x B0 drift 

€ 

ωc i <<ω <<ωc e
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Absorption: Collisionless Damping 

€ 

ω − nωc = k||v||

v

f(v)

Resonance condition:"
"

∂f (v)
∂v

< 0

Condition for damping"

Landau damping: Increase of parallel momentum"

The deformation of the distribution function"
 increases the energy of the electron system."

Energy transfer only if 

E

V|| = Vph −δ V|| = Vph +δ

k"

€ 

n = 0

€ 

ω − k||v|| = 0
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Cyclotron Damping (Doppler shifted) 

€ 

ω − nωc = k||v||
Resonance condition:"
"

Energy transfer only if 

€ 

n =1

€ 

ω − k||v|| =ωc

B0
E

Cyclotron Damping: increase of perpendicular momentum"
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Requirements 

Waves 
 

 
Absorption 

Transformation Transportation Transformation 

Inside plasma Outside plasma 
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Requirements 

Waves 
 

 
Absorption 

Transformation Transportation Transformation 

Inside plasma Outside plasma 

Gyrotrons (ECRF) 
Klystrons (LH) 
Generators (ICRF) 

Optical/waveguides (ECRF) 
Waveguides (LH) 
Coaxial lines (ICRF) 
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ECRH System 

Collector 

Resonator 

Electron- 
beam 

typ. 30A, 80kV 

mm-Wave 

quasi-optical 

or 
waveguide transmission 

EC-Resonance 

Gyrotron 
bis 1MW 

80····170GHz 

Superconducting 
Magnet 

Window 
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ECR 

R 

B(R) 

ne 

“HF-cut-off“ 

UH-Resonance 

EC-“Resonance“ X1-Mode 

EC-“Resonance“ 
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ECRH - Gyrotrons 

superconducting 
coils 

diamond 
window 

annular 
electron beam 

resonator 

conversion 
to Gaussian 
beam 

collector 

Presently: development of 1 MW cw gyrotrons 
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Quasi-Optical Output Couplers for High-Power 
Gyrotrons (1975 Russia) 

Advantages :	


  Isolator for Reflections	


  Optimum Mode for���
  Transmission	


  Free Choice of ���
  Collector Design	


 Radial Output Coupling���
through ���

Optical Elements ���
TEM00 (Gaussian Beam)	


	  Output
W indow

C ollec tor

E lec tron
	   	  B eam

Qua s i-‐Optic a l
Mode 	  C onverte r

	  C ryos ta t

Ma in	  C oil

R es ona tor

	  Beam
Tunne l

Modula tion
	   	   	   	  Anode
E lec tron
	   	   	  Gun

RF	


RF	


M. Thumm 

 Axial Output Coupling���
through ���

Oversized Circular 
Waveguide���

e.g. TE03	
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Further developments 

W indow

C olle c tor

R e s ona tor

p
B

const⊥ =
2

.

Ma g ne tic
C om pre s s ion

E le c tron 	  Gun

E le c tron 	  Tra je c tor ie s

Ma g ne ts

G un	  Anode

Separate window and collector 

Diamond window 

Biased collector 

Multimode cavity 

Coaxial cavity 
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High-Order Volume-Mode Operation in Gyrotron 

electron beam on the first maximum���
(on the modal caustic)���
⇒ 	
reduced mode competition ���
smooth diameter transitions ���
⇒ 	
high mode purity (99%)���
dispersion strengthened copper (Al2O3)	
���
⇒ 	
improved thermo-mechanical features	


 

TE28.8 ,TE31.8  ,TE25.10 
Ø ≈ 20 λ 

 

1999 

TE22.6 
Ø ≈ 15 λ 

 

1994 

TE15.4 
Ø ≈ 10 λ 

1989 

TE0.2 
Ø ≈ 2 λ 

1982 

TE28.8   : 	
EU 	
140 GHz (W-7X)	


TE31.8   : 	
JA 	
170 GHz (ITER)	


TE25.10 : 	
RF 	
170 GHz (ITER)  	


M. Thumm 
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ECRH 

O or X waves 
 

EC Absorption 

Transformation Transportation Transformation 

Inside plasma Outside plasma 

Optical/waveguides 
 

Gyrotrons 
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Lower Hybrid system 

Klystron 
500-750kW 

2,5⋅⋅⋅3,7 GHz 

“Grill” 

00 900 1800 ... 

= “phased array”- 
Antenna 

Stack of 
102-103 

Waveguides 

Wave 

λ ≤  0,5× λvacuum       
N||  ≤ 2	


Front view: 

      N||  

N⊥ 
N 

= conserved - 
quantity! 

E 
~ 

0   90 1800 .... 

evaneschent layer 

ne increases 

“Grill-Antenna“ 
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Passive Active Multi-junction Launcher Concept 
(PAM) 

48 modules of  
 
6 (poloidal direction) x 4 (toroidal direction) active WG 
 
1152 active waveguides (WG)  WGs; 

One module:  
6 rows of multi-junction (6 x 4 active WGs)  
2 mode converters,  
2 tapers, 1 splitter,  
1 transmission line, 1 bellow, 1 window 

active 

passive 

4 

12 

6 

Modules 

Waveguides per module 
4 
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LH 

LH wave 
 

Landau Damping 

Transformation Transportation Transformation 

Inside plasma Outside plasma 

Waveguides 
 

Klystrons 
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Ion cyclotron system 

Tube- 
amplifier 

typ. 2 MW 
30-100 MHz 

50 Ω	

Koax-Ltg. 

Matching-Tuner 
50 Ω → ≈1··3 Ω 

Plasma: 
Re(N) >>1 

Dipole-antenne 

Preamplifier 
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The ASDEX Upgrade ICRF system 

Generators Plasma Antenna Lines and matching 

 3 dB-couplers tuners 

Transformation Transportation Transformation 

Inside plasma Outside plasma 
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50 Ω 50 Ω 
~ 

~ 

Transmission lines 
3 dB couplers and dummy loads 
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Waveguides would be too large 
•  Transfer to plasma, outside of the machine 

–  free space propagation: space >> wavelength = 10m at 30 MHz 
–  waveguide propagation: lower frequency cut-off of waveguide: 

dimensions > wavelength/2 = 5m at 30 MHz 
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50 Ω 50 Ω 
~ 

~ 

Transmission lines 
3 dB couplers and dummy loads 



JMN2012.22.39 

Backward waves are reflected waves generated at changes 
 in the properties of propagating medium 
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•  infinitely long, no changes of properties - no reflection 

•  can we put at the end of a finite length of TL an impedance 
  such that there are no reflections,  
 in other words, that it looks like an infinitely long TL? 

What are the properties of a transmission line? 
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 Antenna impedance ≠ Z0 

L 
R 

P RF 

P RF 

Faraday screen 
(optically open) 

limiter 

straps 
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Z0 

Matching network: two ways to look at it 

1) reflect reflections 

2) add impedances to match 

= 
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Matching network: reflect reflections 

Matching network 

50 Ω	
50 Ω	


~ 

~ 

RF connections: 
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Matching network 

… 

Matching network 

50 Ω	
50 Ω	


~ 

~ 

RF connections: 
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Real and imaginary part 

Matching network 

… … 

Matching network 

50 Ω	
50 Ω	


~ 

~ 

RF connections: 
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Dynamic matching or load isolation necessary 

50 Ohm 

matching 

1 ms 

Dα 

R 

0 

0 
8 

8 

2-10 +ΔR Ohm + j X + ΔX 

Antenna 

•  timescales of variations 

–  particle/energy confinement time  ms to s  

–  MHD events    100µs 
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3 dB couplers for ELM resilience 

Hα 

Power  
to antenna 

Reflected 
power 

Reflected 
power  
at generator 

5 kW 

100 kW 

 1 MW 
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Transmission lines 
3 dB couplers and dummy loads 

50 Ω 50 Ω 
~ 

~ 
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ICRF 

Fast Wave 
 

Cyclotron Damping 

Transformation Transportation Transformation 

Inside plasma Outside plasma 

Coaxial lines 
 

Generators 
(tetrodes) 
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Summary EM heating methods 

•  for power to be absorbed into the plasma it must first get there 

•  wave propagation: range of frequencies 
–  Electron cyclotron 
–  Lower Hybrid 
–  Ion cyclotron 

•  absorption in plasma: wave - particle interaction 
–  cyclotron damping, also at harmonics 
–  Landau damping 

•  very large number of possibilities, not just heating 
–  current drive 
–  control of instabilities 
–  … 
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Summary EM heating methods 

•  one must also be able to generate and transport the power 

•  Non trivial, examples 

–  Negative ions 

–  Gyrotron: high frequency, small dimensions 

–  LH antenna: PAM 

–  ICRF: generators and transmission lines 
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Remember: 4 steps 

Electricity -> other form 
 
-  fast particles 

-  electromagnetic oscillations 
 

(outside part) 
 

•  Duct 

•  optical, waveguides, coaxial 
     and antenna 

(inside part) 
 

•  Beam 

•  waves 

 
-  Ionisation 

-  wave/particle 

To  plasma particles 

Transformation Transportation Transformation 

Inside plasma Outside plasma 

Transport  
 


